Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Article in Spanish | LILACS | ID: lil-698684

ABSTRACT

El objetivo principal de este trabajo fue montar y probar un modelo experimental para medir la conductancia hidráulica de la dentina ex vivo. Diecisiete terceros molares sanos, con indicación de exodoncia, de donantes sanos de edades entre 15 y 30 años fueron obtenidos mediante consentimiento informado. Luego de limpiarlos, desinfectarlos, incluirlos en resina epóxica y cortarlos se obtuvieron 17 muestras de dentina, correspondiente a un disco de resina con un corte coronal de diente que presenta dentina expuesta en ambas caras de éste. Tres equipos para medir la conductancia hidráulica de la dentina fueron armados siguiendo la descripción del modelo de Pashley. Las muestras fueron instaladas en una cámara de difusión, conectada mediante tubos de silicona a una pipeta graduada y una columna de agua de 20cm. Mediante el desplazamiento de una burbuja de agua al interior de la pipeta, se midió la conductancia hidráulica de cada muestra, 3 veces los días 14, 21, 28 y 35 postextracción. Los datos fueron tabulados y analizados estadísticamente. No existe diferencia en la tasa de flujo de una muestra medida en los tres equipos (p=0.5937). No existe diferencia en las mediciones de la conductancia hidráulica de 13 muestras de dentina humana medida en los días 14, 21, 28 y 35 postextracción (p=0.0704). Es posible montar un modelo experimental para estudiar la conductancia hidráulica de la dentina ex vivo, basado en el modelo de Pashley y col. El modelo pareciera ser confiable, pero es necesaria más investigación para poder validar su confiabilidad.


The main objective of this work was to mount and test an experimental model to measure the hydraulic conductance of ex vivo dentin. Seventeen healthy third molars, with indication of extraction of healthy donors aged between 15 and 30 years were obtained by informed consent. After cleaning them, disinfecting them, including them in resin epoxy and cutting them, there were 17 samples of dentin, corresponding to a disk of resin with a coronal section of tooth showing the dentin exposed on both sides of it. Three machines to measure the hydraulic conductance of the dentin were assembled according to the description of the model of Pashley. Samples were installed in a Chamber of diffusion, connected by using silicone tubes to a graduated transfer pipette and a 20cm water column. Through the displacement of a bubble of water in the inside of the pipette, the hydraulic conductance of each sample was measured 3 times on the 14th, 21st, 28th and 35th day post extraction. The data were tabulated and analyzed statistically. There is no SS difference in the rate of flow of a measured sample in the three machines (p=0.5937). There is no SS difference in measurements of the hydraulic conductance of 13 samples of human dentin measured in days 14, 21, 28 and 35 postextraction (p=0.0704). It is possible to mount an experimental model to study the hydraulic conductance of dentin ex vivo, based on the model of Pashley. The model seems to be reliable, but more research is needed in order to validate its reliability.


Subject(s)
Humans , Adolescent , Adult , Young Adult , Diffusion , Dentin/physiology , Molar, Third , Tooth Permeability/physiology , Water
2.
São Paulo; s.n; 2012. 100 p. ilus, tab. (BR).
Thesis in Portuguese | LILACS, BBO | ID: lil-682247

ABSTRACT

O digluconato de clorexidina reage com o hipoclorito de sódio formando um precipitado, que segundo a literatura, é composto por para-cloroanilina (PCA), ou por para-clorofenil uréia (PCU) e para-clorofenilguanidil-1,6-diguanidil-hexano (PCGH). Este estudo visou analisar quimicamente os produtos formados e a presença de PCA no precipitado. Para isso, foi realizada a reação de 50 mL de solução de hipoclorito de sódio a 5% (NaOCl) e de 50 mL de solução de digluconato de clorexidina a 2% (CLX) em proporções iguais (1:1). O precipitado foi separado do sobrenadante e desidratado. A CLX pura, uma amostra do precipitado puro e outra amostra de precipitado com adição de PCA foram diluídas em dimetilsulfóxido deuterado e analisados em ressonância magnética nuclear 1D 1H (RMN) para verificar, por comparação, a presença da PCA no precipitado e para obtenção dos deslocamentos químicos dos produtos presentes no precipitado. Outra amostra do precipitado, de solução de CLX e de PCA foram separadas em cromatografia líquida de alta eficiência e analisadas em espectrômetro de massa (HPLC-ESI-MS) para identificação dos pesos moleculares dos compostos. A comparação do espectro do precipitado puro e do espectro do precipitado com adição de PCA permitiu analisar que o dubleto presente na região dos compostos aromáticos, referente à PCA, não está presente no espectro do precipitado puro demonstrando que não há PCA no precipitado. A análise do espectro de RMN do precipitado puro sugere que há formação de compostos com um e dois anéis aromáticos. Os espectros de massa permitem sugerir que há quebra da molécula de CLX, pelo hipoclorito de sódio, em sítios específicos (grupo biguanidil) que resultam na formação de fragmentos da molécula de clorexidina que se reorganizam formando oligômeros, ou seja, moléculas em que algumas unidades se repetem e, uma vez formadas, são estáveis e insolúveis em água. É possível concluir que no precipitado não há presença de PCA, sugerindo-se que haja PCGH e outros compostos com pesos moleculares maiores que o da clorexidina, denominados, neste estudo, C3, C4, C5, C6 e C7.


The reaction between chlorhexidine digluconate and sodium hypochlorite result in a precipitate, which according to the literature, is composed of para-chloroaniline (PCA), or para-chlorophenylurea (PCU) and para-chlorophenylguanidyl-1,6- diguanidyl-hexane (PCGH). The purpose of this study was to determine the chemical composition, the relative molecular weight of the compounds and whether PCA is formed in the precipitate. A 2% chlorhexidine digluconate solution was mixed in a 1:1 ratio with 5% NaOCl solution producing the precipitate. It was centrifuged, separed from the supernatant and dried. Pure CHX, the precipitate, as well as a mixture of precipitate and pure PCA were dissolved in deuterated dimetilsulfoxide and then analyzed using one-dimensional 1H nuclear magnetic resonance (MNR) to determine whether PCA was formed and to obtain precipitates chemical shifts. Other precipitate, CHX digluconate solution and PCA samples were analized using high performance liquid chromatography - electrospray ionization - mass spectrometry (HPLC-ESI-MS). Comparing the spectrum of the precipitate alone and precipitate with PCA allow to identify that PCA doublet peaks are not present in the spectrum of the precipitate alone, demonstrating that there are no PCA in the precipitate. NMR spectrum of the precipitate alone suggests that there is compounds with one and two aromatic rings. Mass spectra suggests that breaks in chlorhexidine molecule on specific sites (biguanidil groups), by sodium hypochlorite, results in fragments that forms oligomers molecules in wich some units are repeated and, once formed, are stable and insoluble in water. On the basis of this study, there is no PCA in the precipitate and suggesting that there may be other compounds like PCGH and others compounds, all of which are bigger in size than CHX, called, in this study, C3, C4, C5, C6 and C7.


Subject(s)
Coloring Agents/therapeutic use , Microscopy, Electron, Scanning/methods , Tooth Permeability/physiology , Luffa
3.
Article in English | IMSEAR | ID: sea-51524

ABSTRACT

Extracated human molars were used for the study, flat dentinal surfaces were prepared on the occlusal surfaces, and then 4th and 5th generation dentin bonding agents were used in dry and moist conditions to bond composite resin onto the flat dentin surfaces. Shear Bond Strength was measured using Instron Universal Testing machine. Failures were recorded as adhesive, cohesive and mixed. Bond strength was highest in moist condition, because the moist surface permits more porous collagen network and hence greater infiltration of adhesive monomers, than do surfaces that are air dried. Moreover, those dentin bonding agents whose primers are based on acetone show improved bond strength, because acetone aggressively pursues and displaces water in the substrate, resulting in the primer resin being carried into tissue channels and porosities. When the dentin is air dried, the water that is supporting the collagen network evaporates causing the collagen network to collapse network is greatly reduced, which in turn decreases the premeability of intertubular dentin to adhesive resin and as a result causes decrease in bond strength. 5th generation dentin bonding agent showed significant improvement in the moist dentin bond strength.


Subject(s)
Bisphenol A-Glycidyl Methacrylate/chemistry , Composite Resins/chemistry , Dental Bonding , Dental Restoration, Permanent/methods , Dental Stress Analysis , Dentin/physiology , Dentin-Bonding Agents/chemistry , Humans , Materials Testing , Methacrylates/chemistry , Molar , Polymethacrylic Acids/chemistry , Polyurethanes/chemistry , Shear Strength , Tooth Permeability/physiology , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL